CHI-SQUARE TEST FOR HOMOGENEITY OF POPULATIONS

This test is used to determine if a single categorical variable has the same distribution in 2 (or more) distinct populations from 2 (or more) samples.

To determine if there was an association between race and opinions about schools, researchers surveyed 3 randomly selected groups of parents and asked them "Are high schools in your state doing an excellent, good, fair or poor job or don't you know enough to say?".

	Black Parents	Hispanic Parents	White Parents	TOTAL
Excellent	12	34	22	$\mathbf{6 8}$
Good	69	55	81	$\mathbf{2 0 5}$
Fair	75	61	60	$\mathbf{1 9 6}$
Poor	24	24	24	$\mathbf{7 2}$
Don't Know	22	28	14	$\mathbf{6 4}$
TOTAL	$\mathbf{2 0 2}$	$\mathbf{2 0 2}$	$\mathbf{2 0 1}$	$\mathbf{6 0 5}$

DETERMINE EXPECTED COUNTS:

Expected Count $=($ Row Total $)($ Column Total $) /$ Sample Size

	Black Parents		Hispanic Parents		White Parents	
	Actual	Expected	Actual	Expected	Actual	Expected
Excellent	12	22.7	34	22.7	22	22.6
Good	69	68.5	55	68.5	81	68.1
Fair	75	65.4	61	65.4	60	65.1
Poor	24	24.0	24	24.0	24	23.9
Don't Know	22	21.4	28	21.4	14	21.3

H STATE NULL AND ALTERNATIVE HYPOTHESES

H_{o} : There is no relationship between race and opinions about schools
H_{a} : There is a relationship between race and opinions about schools

A DETERMINE THAT CONDITIONS FOR TEST ARE ACCEPTABLE:

- SRS... unknown though the samples were random
- Counts (not percents)... yes
- Every expected count ≥ 1 and $80 \% \geq 5 \ldots$ yes

FORMULA/TABLE E:

a) Chi-Square Statistic: $X^{2}=\Sigma\left(\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}\right)^{2} / \mathrm{E}_{\mathrm{i}}=$

$$
(12-22.7)^{2} / 22.7+(34-22.7)^{2} / 22.7+\ldots+(14-21.3)^{2} / 21.3=22.43
$$

b) Degrees of Freedom $=(\mathrm{r}-1)(\mathrm{c}-1)=(5-1)(3-1)=8$

Number of rows Number of columns in table in table
c) P-Value
i) Table E

Any X^{2} statistic $>21.95(\mathrm{df}=8)$ has a P -value $<.005$
ii) Calculator:

$$
X^{2} \operatorname{cdf}(22.43,100,8) \rightarrow p=.004
$$

CALCULATOR:

a) Store observed counts in a $[\mathrm{R}, \mathrm{C}]$ matrix:

MATRIX \rightarrow EDIT \rightarrow 1: [A] $\rightarrow 5$ X $3 \rightarrow$ Enter Counts \rightarrow QUIT
b) Perform X^{2} Test:

STAT \rightarrow TESTS $\rightarrow \mathrm{C}: \mathrm{X}^{2}-$ Test $\rightarrow \mathrm{X}^{2}=22.4, \mathrm{P}$-value $=.004$

NOTE:

If MATRIX [A] = Observed Counts, MATRIX [B] = Expected Counts

S STATE CONCLUSION IN CONTEXT:

There is significant evidence (P -value $<.005$) to reject H_{0} and conclude that there is a relationship between race and opinions about schools... to determine specific comparisons, use 2-way table techniques. For example, a greater percentage of Whites consider schools good compared to Hispanics etc.

